Efficiently Merging Symbolic Rules into Integrated Rules
نویسندگان
چکیده
Neurules are a type of neuro-symbolic rules integrating neurocomputing and production rules. Each neurule is represented as an adaline unit. Neurules exhibit characteristics such as modularity, naturalness and ability to perform interactive and integrated inferences. One way of producing a neurule base is through conversion of an existing symbolic rule base yielding an equivalent but more compact rule base. The conversion process merges symbolic rules having the same conclusion into one or more neurules. Due to the inability of the adaline unit to handle inseparability, more than one neurule for each conclusion may be produced. In this paper, we define criteria concerning the ability or inability to convert a rule set into a single neurule. Definition of criteria determining whether a set of symbolic rules can (or cannot) be converted into a single, equivalent but more compact rule is of general representational interest. With application of such criteria, the conversion process of symbolic rules into neurules becomes more timeand space-efficient by omitting useless trainings. Experimental results are promising.
منابع مشابه
Integrating Hybrid Rule-Based with Case-Based Reasoning
In this paper, we present an approach integrating neurule-based and case-based reasoning. Neurules are a kind of hybrid rules that combine a symbolic (production rules) and a connectionist representation (adaline unit). Each neurule is represented as an adaline unit. One way that the neurules can be produced is from symbolic rules by merging the symbolic rules having the same conclusion. In thi...
متن کاملAn Integrated MFFP-tree Algorithm for Mining Global Fuzzy Rules from Distributed Databases
In the past, many algorithms have been proposed for mining association rules from binary databases. Transactions with quantitative values are, however, also commonly seen in real-world applications. Each transaction in a quantitative database consists of items with their purchased quantities. The multiple fuzzy frequent pattern tree (MFFP-tree) algorithm was thus designed to handle a quantitati...
متن کاملUsing Competitive Learning between Symbolic Rules as a Knowledge Learning Method
We present a new knowledge learning method suitable for extracting symbolic rules from domains characterized by continuous domains. It uses the idea of competitive learning, symbolic rule reasoning and it integrates a statistical measure for relevance analysis during the learning process. The knowledge is in form of standard production rules which are available at any time during the learning p...
متن کاملExtracting Reened Rules from Knowledge-based Neural Networks Keywords: Theory Reenement Integrated Learning Representational Shift Rule Extraction from Neural Networks
Neural networks, despite their empirically-proven abilities, have been little used for the reenement of existing knowledge because this task requires a three-step process. First, knowledge must be inserted into a neural network. Second, the network must be reened. Third, the reened knowledge must be extracted from the network. We have previously described a method for the rst step of this proce...
متن کاملRule Induction through Integrated Symbolic and Subsymbolic Processing
We describe a neural network, called RufeNet, that learns explicit, symbolic condition-action rules in a formal string manipulation domain. RuleNet discovers functional categories over elements of the domain, and, at various points during learning, extracts rules that operate on these categories. The rules are then injected back into RuleNet and training continues, in a process called iterative...
متن کامل